Industrial Motor Service
  • Home
  • About
    • Testimonials
  • Services
    • Lamination
    • Servo Motor Repair
    • Core Loss Testing
    • AC Motor Repair
    • DC Motor Repair
    • Dynamic Balancing
    • Field Services
    • Additional Services
  • Contact
  • Blog
  • Support
  • Home
  • About
    • Testimonials
  • Services
    • Lamination
    • Servo Motor Repair
    • Core Loss Testing
    • AC Motor Repair
    • DC Motor Repair
    • Dynamic Balancing
    • Field Services
    • Additional Services
  • Contact
  • Blog
  • Support
Search by typing & pressing enter

YOUR CART

7/25/2017 0 Comments

Preventative Maintenance - Spend Now...Save Big

Picture

​FIVE IMPORTANT TIPS FOR YOUR PREVENTATIVE MAINTENANCE CHECKLIST!

​It is important to ensure electric motors perform well because they have a massive impact on a business' productivity and profit. Although operating these motors may seem straightforward and simple, their condition should not be overlooked. This is why it is essential to perform preventive maintenance (PM) checks on electric motors as a part of managing facility assets.
By preparing a checklist for PM program, facilities can make sure that every motor is properly examined and monitored. This also provides managers with an opportunity to detect potential issues and address these ahead of time. By doing so, costly repairs or unplanned expenses can be prevented in case there is a need to replace motors completely.
These five components are essential for a PM program and must be implemented regularly by a business owner.

1. Perform visual inspections on the motor
There are so many things to discover by just conducting a visual check on an electric motor. Take a good look at its physical condition and be sure to record any pieces of information. If the motor has been operating in a rugged environment, it is possible to find signs of corrosion or dirt buildup on its individual components. These all present a potential internal problem since any debris can limit the performance of the equipment.
Make it a point to observe the motor windings and look for a burned odor from overheating. The contacts and relay should also be free from dirt and rust, which are detrimental to the life of the motors. Situate the equipment in an environment without exposure to dirt, moisture, toxic elements, and harsh conditions.

2. Maintenance checks on the commutator and brush
Do not wait until the electric motors stop working or experience inconsistencies in performance. As a part of the PM schedule, users should take a closer look at the brush and commutators. Make sure there are no signs of wear and tear. An excessive wear in the brush can lead to commutation problems with the motor. This is why the brush will need to be changed to regain the integrity of the equipment's function.
In the same way, the commutator needs to be kept in check. Its natural condition is smooth and polished. It should also have no dents, scratches, or grooves since any rough spot suggests brush sparking. Make a thorough inspection of the motor mount, stator, rotor, and the belts. Replace any worn components, which no longer serve their purpose.

3. Conduct a motor winding test
After the different machine components have been inspected, the next thing to do is test the motor windings. This will give the user a better idea on existing anomalies or failures in the motor windings. Moreover, if burn marks and odors, as well as cracks in the windings have been discovered, motor winding tests are mandatory.
To prepare for the test, be sure to disassemble the motor. This will help determine any abnormalities that the motor has been undergoing. In case the windings have experienced overheating, then there is a high chance that a serious damage is present. Rewinding the motor is a crucial part of this test, along with the testing of the wind insulation that reveals information on the resistance level.

4. Check the bearings
Inspect the bearings if there is any vibration or noise. These are signs of potential problems including dirt buildup, poor lubrication, or wear and tear. The bearing housing may also end up too hot to the touch. This could signal issues such as an insufficient amount of grease or overheating of the motor.
Depending on the bearing type, a specific PM task might be necessary. Other factors include the motor application and the environment where the equipment is situated. There are some motors with a low horsepower that no longer need lubrication as these have sealed bearings. Managers have to be aware of the type of bearing and the kind of repair it requires.

5. Keep records
Each time PM schedules occur, users should document the tests performed, and the results gathered for the purpose of establishing trends. Record all repairs or replacements made on every motor component. This creates a better understanding of each piece of equipment, which includes issues addressed or parts replaced. This will be handy for future inspections.

Industrial Motor Service can assist you with this important aspect of Plant Operations and Facilities Management. Call on us to assist or to execute your Preventative Maintenance Program to avoid costly shutdowns or repairs!

0 Comments

7/20/2017 4 Comments

POOL PUMP ANATOMY - IMS TIPS & TRICKS

Picture
A person who has had the pleasure of seeing the inner workings of a pool pump (on their own workbench or looking over the shoulder of a technician) may have noticed it looks simpler than expected. Considering the pump is this piece of machinery that can pump 80 gallons or more a minute, leaves one to expect a few SECRETS hidden away inside the casing. But in practice the pool pump can be broken down into two categories of parts; the drivetrain and the outer structure. Or, the parts that push and pull the water and the ones that keep it from leaking.
This is an informal guide to identifying pool pump parts, so a "Do-it-yourselfer" can either fix it themselves or at least understand the terminology when talking to a tech. Let’s break down the parts of a pump and see how they contribute to the overall functionality.


​

ANATOMY

​




Inside a Pool Pump Housing

All of the pump’s inner workings – the impeller, diffuser, seals, and motor – fit in or onto this outer casing. The standard housing material is currently the high impact plastic composite called Noryl. This resilient, lightweight material is rustproof and holds up extremely well under duress from heat, rain and water pressure.
Older pumps (early 80’s and back) were made of brass or bronze; these materials proved to be extremely durable, but costly to maintain. A plastic injection molded impeller is going to be much less expensive than a brass version that has to be smelted and forged. Also, the switch to plastic allowed major weight reduction as those metal pumps weigh upwards of 100 pounds. Metal pumps were really durable workhorses and can still be found on pools today.

Lid
The strainer lid is the pump’s main inspection point from which a tech or homeowner can determine a system’s health. If we find large air bubbles or no water at all in the strainer lid while the pump is running, that could be a sign of an air leak along the suction side. Because of its necessity as an inspection point, the lid is made of a clear or tinted Lexan glass. If you are unfamiliar with Lexan, it is the material used in bulletproof windows and other glass-like materials.

​Strainer Basket
The strainer basket collects debris before it reaches the important parts of the drivetrain. This basket can save you a bundle just by preventing hard debris like pebbles from surging into the pump and chipping the impeller.
Gaskets & Seals

Pool Pump Gaskets
The gaskets and seals are what keep your equipment pad dry and your water moving. A bad set of gaskets can have your equipment area flood or a pump filled with air rather than water. There are four main gaskets and seals on a pool pump:
​
Lid Gasket – located on or under the strainer lid.
Diffuser Gasket – Found on the cone tip of the diffuser.
Housing Gasket – Largest of the gaskets and found in the seam between the main housing on the motor seal plate. This gasket is also called seal plate gasket.
Shaft Seal – The two sided seal that sits underneath the impeller on the shaft of the motor. This is the most important seal as it prevents water from surging into the motor and causing fatal damage.
Seal Plate
The seal plate is a motor’s mounting flange that allows it to be secured to the pump housing. The seal plate is named so because it houses the shaft seal that encloses around the shaft to prevent water leaks into the motor. This is made of the same Noryl plastic as the housing, making it lightweight and super strong.

The Drive Train

Motor 

The driving force behind the pump is its motor which creates the churning force necessary to prime the pump and circulate water. The standard is single speed induction motors, but they are slowly losing ground to dual speed and variable speed motors. Variable speed and dual speed have grown into popularity due to their energy efficiency and have also been bolstered by electric companies offering rebates for homeowners who choose to upgrade.
Most single speed motors run a dual voltage setup which allows them to run on either 230 or 115 voltage (user must adjust voltage before installing). Variable speed and most dual speed run strictly on 230 voltage; there are some exceptions in the dual speed category that run on 115.

Impeller 
The impeller is what makes all the magic happen; magic meaning, transforming the spinning shaft of the motor into the pulling force for pumping. An impeller is essentially two discs glued together to sandwiching fan blades (also called veins). The front disc has an opening with a porthole to focus the churning power of the impeller towards the suction pipe to the pool. The water is pulled through the impeller face and then expelled through the impeller’s slotted sides – it’s H2O’s version of a merry-go-round. The water is then rushed back to the pool.

Diffuser
We call this an impeller accessory and a very important one at that. A diffuser amplifies the pull of the impeller by creating a tightly enclosed vacuum lock to the front housing to maximize its power. The diffuser resembles a funnel or a cone that shrouds the impeller; its tip butts up to the front housing, sealed by the diffuser gasket. As the impeller spins, the diffuser shroud concentrates the turbulent energy of the impeller towards the suction pipe which makes the pump prime.

Impeller Ring
The impeller ring, aka the wear ring, is a plastic ring that fits to the tip of the impeller. The purpose of a wear ring is to act as an extension of the impeller tip to ensure a seal between the impeller and diffuser. The centrifugal force of the impeller forces the wear ring to affix to the diffuser to ensure an even tighter vacuum for priming and pumping. Wear rings are not found on every pump style but are usually seen on high pressure and high head style pumps, i.e. Hayward Super II or Pentair Challenger.

​Impeller Screw
The impeller screw is meant to secure an impeller to internal threaded shaft motors. The impeller screw is quickly becoming obsolete as most manufacturers switched to external thread motor shafts. This change to external threads allows for the impeller to be screwed directly to the motor shaft without the need for extra securing. The thread type of the new impellers also means the impeller is being spun in the direction that keeps it tight to the motor to prevent any slippage.
If you’re still in need of more information, please do not hesitate in calling us at 864.226.2893 at Industrial Motor Service. We’re here to help!

4 Comments

7/17/2017 0 Comments

BBB Accredited and Rated A+

Picture
Picture
​Did you know that Industrial Motor Service is accredited by the Better Business Bureau? Did you know that Industrial Motor Service is also rated "A+" by the Better Business Bureau? Can you be confident in your decision to contact Industrial Motor Service for your Electric Motor Repair and Service? Absolutely!
0 Comments

    Watt a Life!


    ​Rebuilding Motors since 1991

    Archives

    February 2018
    September 2017
    August 2017
    July 2017
    June 2017

    Categories

    All

    RSS Feed

Picture
Picture
Picture
Picture
Picture

INDUSTRIAL MOTOR SERVICE, INC.

3021 STANDRIDGE ROAD
​
​ANDERSON, SC 29625

p: 864.226.2893

g'ville:  864.232.0216

imsinfo@industrialmotorservice.com

Picture
Picture
Picture
Website by Kruzman Kreations
All Rights Reserved Industrial Motor Service 2018